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Abstract: This paper describes the optimization of a load-bearing thermal in-
sulation system characterized by hot and cold surfaces with a series of heat in-
tercepts and insulators between them. The optimization problem is represented
as a mixed variable programming (MVP) problem with nonlinear constraints, in
which the objective is to minimize the power required to maintain the heat in-
tercepts at fixed temperatures so that one surface is kept sufficiently cold. MVP
problems are more general than mixed integer nonlinear programming (MINLP)
problems in that the discrete variables are categorical; i.e., they must always take
on values from a predefined enumerable set or list. Thus, traditional approaches
that use branch and bound techniques cannot be applied.

In a previous paper, a linearly constrained version of this problem was solved
numerically using the Audet-Dennis generalized pattern search (GPS) method
for MVP problems. However, this algorithm may not work for problems with
general nonlinear constraints. A new algorithm that extends that of Audet and
Dennis by incorporating a filter to handle nonlinear constraints makes it possible
to solve the more general problem. Additional nonlinear constraints on stress,
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mass, and thermal contraction are added to that of the previous work in an effort
to find a more realistic feasible design. Several computational experiments show a
substantial improvement in power required to maintain the system, as compared
to the previous literature. The addition of the new constraints leads to a very
different design without significantly changing the power required. The results
demonstrate that the new algorithm can be applied to a very broad class of op-
timization problems, for which no previous algorithm with provable convergence
results could be applied.

1 Introduction

In a thermal insulation system, heat intercepts are often used to minimize the heat flow from
a hot to a cold surface. Figure 1 illustrates an example of such a system of fixed length L,
in which power is applied to maintain each intercept i at a specified cooling temperature
T i, i = 1, 2, . . . , n (we use T here to distinguish it from the general temperature variable T
used later). An insulator of thickness xi is placed between each pair of intercepts i−1 and i,
with the convention that i = 0 and i = n+1 represent the cold and hot surfaces, respectively,
so that T 0 = TC and T n+1 = TH . Note that each insulator in Figure 1 may have a different
cross-sectional area. The design variables for the system include the number and cooling
temperatures of the intercepts, and the insulator types and thicknesses. Furthermore, we
assume that the system must be load-bearing, meaning that the insulators act as mechanical
supports; thus, only solid materials can be used.

T n+1 = TH

T 0 = TC
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Figure 1: Schematic of a Thermal Insulation System

Variations of this type of system used in cryogenic engineering applications, such as su-
perconducting magnetic energy storage systems and space borne magnets, have been studied



May 5, 2003 3

by several authors. Hilal and Boom [22] used a gradient-based optimizer to minimize power
for n = 1, 2, and 3 intercepts with two choices of insulators of constant cross-sectional area,
but without mixing insulator types within the system. Hilal and Eyssa [23] studied the same
problem, but with variable cross sectional area for the mechanical supports. In considering
systems with more general types of insulation, Chato and Khodadidi [14] sought to minimize
entropy, similar to the formulation given by Bejan [10]. Other related attempts to optimize
the design of these systems are found in [30], [35], and [41]. An actual implementation of
these types of systems for the Large Hadron Collider (LHC) project is discussed in three
technical reports [18, 24, 31].

While all of these studies vary in geometry and fidelity of the underlying models, none
of them optimizes with respect to the number of intercepts and types of insulators. These
variables are referred to as categorical, meaning that they must take on values only from a
predefined list or discrete set of categories, or else the design cannot be evaluated. The term
appears more commonly in the field of statistics, in which each observation of a sample is
assigned a category based on what interval its value lies in (e.g., see [16]). While categorical
variables can take on numerical values, the values may not have any real meaning or inherent
ordering (e.g., 1 = steel, 2 = aluminum, etc.). The difficulty these variables present is that
traditional methods (most notably, any branch and bound approach) for solving mixed inte-
ger problems cannot be applied because this restriction on the categorical variables cannot
be relaxed.

Kokkolaras, Audet, and Dennis [26] extended the Hilal and Boom model to include the
number of intercepts and type of insulators as actual variables in the model, thus allowing
a mixture of different insulator types in the system. This required an extension of the
theory [7] to be able to deal with categorical variables. They achieved a 65% reduction
in required refrigeration power from that of [22] by using the Audet-Dennis mixed variable
generalized pattern search (MGPS) algorithm [7] to solve this bound constrained mixed
variable programming (MVP) problem. However, other than choosing the specific list of
possible insulators, they did not consider certain load-bearing aspects of the problem, such
as thermal expansion, system mass, and stress, because these are modelled as nonlinear
constraints.

Since the MGPS algorithm does not handle nonlinear constraints, a new GPS algo-
rithm [2] is applied, in which a filter is added to the MGPS algorithm to handle the nonlinear
constraints. This paper describes the formulation of the optimization problem (Section 2),
the extensions that have been made to the Audet-Dennis algorithm (Section 3), the imple-
mentation of the algorithm for solving the problem (Section 4), and computational results
(Section 5).
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2 Basic Model of Thermal Insulation Systems

In this section, we reformulate the Kokkolaras et al. model (as extended from that of [22]) to
include constraints on thermal expansion, stress, and mass. Much of this discussion comes
directly from the presentation in [26], although some of the discussion of stress is similar to
that of [23]. The new model can be expressed as

min
(n,I,x,T )∈X

f(n, I, x, T )

subject to g(n, I, x, T ) ≤ 0,
(1)

with the following nomenclature:

• n is the number of heat intercepts, with the convention that the cold and hot walls are
numbered 0 and n + 1, respectively.

• I ∈ In+1 is the set of insulators used, where Ii represent the insulator type between
intercepts i− 1 and i, and I denotes the finite set of possible insulator types.

• x ∈ <n is the vector whose i-th component is the thickness of the i-th insulator, with
the convention that xn+1 = L−∑n

i=1 xi.

• T ∈ <n is the vector whose i-th component is the temperature of the i-th intercept,
with the convention that T 0 = TC and T n+1 = TH .

• The feasible region X is defined by the following linear and categorical constraints:

n ∈ {1, 2, . . . , nmax}, (2)

I ∈ In+1, (3)
n∑

i=1

xi ≤ L, (4)

xi ≥ 0, i = 1, . . . , n (5)

T i−1 ≤ T i ≤ T i+1, i = 1, . . . , n. (6)

A difficulty in solving this problem is that the dimension of the vectors I, x, and T depend
on the variable n. For any value of n, there are n + 1 other categorical variables and 2n
continuous variables, yielding a total of 3n + 2 variables.

2.1 Objective Function

The objective function represents the total refrigeration power of the system; thus,

f =
n∑

i=1

Pi, (7)
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where Pi is the power applied to intercept i, i = 1, 2, . . . , n. The required power to keep
intercept i at a fixed temperature T i is given by

Pi = Ci

(
TH

T i

− 1

)
(qi+1 − qi), (8)

where Ci (a function of temperature T ) is the thermodynamic cycle efficiency coefficient at
intercept i, and qi represents the heat flow from intercept i to i− 1.

In general, heat flow q through a volume is governed by Fourier’s law,

qdx = Ak(T )dT, (9)

where A (a function of the spatial coordinates in the z-y plane perpendicular to the x
coordinate) is the cross-sectional area of the volume, and k (a function of temperature) is
the effective thermal conductivity of the volume.

For the problem at hand, the heat flow qi from intercept i to i− 1 is given by

qi =
Ai

xi

∫ T i

T i−1

k(T ; Ii)dT, i = 1, 2, . . . , n + 1, (10)

where Ai denotes the cross-sectional area of insulator i, and the thermal conductivity k is
a function of both the temperature T and the type of insulator Ii and is assumed to be
isotropic.

By substituting (10) into (8), the objective function can be expressed by (7), with

Pi = Ci

(
TH

T i

− 1

)[
Ai+1

xi+1

∫ T i+1

T i

k(T ; Ii+1)dT − Ai

xi

∫ T i

T i−1

k(T ; Ii)dT

]
. (11)

2.2 Nonlinear Constraints

The inequality in (1) represents the new nonlinear constraints added to the MVP problem
of [26], which we use to numerically test the new filter MGPS (FMGPS) algorithm. Although
we add three types of constraints; namely mass, stress, and thermal expansion, we model
the stress constraint as an implicit equality constraint so that we can eliminate insulator
cross-sectional areas as design variables.

The first constraint concerns the overall mass of the system. This constraint may actually
be budgetary in nature, as larger amounts of insulation material increase the overall cost.
Since the weight of each insulator can be expressed as a product of the density of the insulator
material and its volume, we have the constraint,

n∑
i=1

ρi(Ii)Aixi ≤ mmax, (12)
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where ρi(Ii) represents the density of material used as insulator i, and mmax is the maximum
allowable mass of the system. Note that setting each volume to Aixi assumes that the area
of the insulator is constant throughout the interval; however, this is not an unreasonable
assumption.

We also assume that the system must be capable of bearing a specified load F . The stress,
defined as load per unit area, must not be allowed to exceed a certain level. In this case, we
constrain the stress applied to each insulator to be no greater than the tensile yield strength
of that insulator (thus, we assume that the load is suspended from the system, rather than
resting on top of it). The tensile yield strength at insulator i, denoted by σi(T ; Ii), is a
function of both the insulator type and temperature, and its minimum over the temperature
range of the insulator σ̄i must act as the constraint limit for the allowable stress. Therefore,
we have constraints of the form

F

Ai

≤ σ̄i
.
= min {σi(T ; Ii) : T i−1 ≤ T ≤ T i}, i = 1, 2, . . . , n + 1. (13)

The difficulty with the constraints given in (12) and (13) is that they treat the areas Ai,
i = 1, . . . , n, as additional design variables. However, there is a convenient and perfectly
legitimate way around this problem. First, observe that the direct relationship between Ai

and Pi in (11) means that decreasing the cross-sectional area of any insulator reduces the
power applied to the corresponding intercept, which is exactly the goal of the optimization
problem. Thus, at an optimal point, each Ai should be as small as possible. Furthermore,
as each Ai is made smaller, the stress constraint in (13) becomes binding – and must be
so at optimality. Therefore, we can assume that (13) holds with equality and make the
substitution Ai = F

σ̄i
to eliminate Ai as a variable in (12) and in the objective function. This

yields a stress-mass constraint of the form

n∑
i=1

ρi(Ii)
xi

σ̄i

≤ mmax

F
. (14)

The final constraint is one associated with the system’s thermal expansion, or as in our
cryogenic application, thermal contraction. In addition to moving the heat intercepts out of
their optimal position, thermal contraction causes additional stress on the materials and, if
excessive, can cause other difficulties, such as deformations in the material. The development
of this constraint as presented here is adapted from [9].

Since different insulators at different temperatures exhibit different contraction behaviors,
we must treat thermal contraction of each insulator separately as a change in its thickness.
The constraint can then be expressed as a weighted sum, where each insulator’s weight is
simply its thickness divided by the total length of the system; i.e.,

n∑
i=1

(
∆xi

xi

) (xi

L

)
≤ δ

100
, (15)
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where δ is a limit on the percent total contraction of the system.

For insulator i, e(T ; Ii) denotes the unit thermal contraction (a function of temperature)
from intercept i to any point between intercept i and i− 1 and is computed by the formula,

e(T ; Ii) =

∫ T i

T

λidT, (16)

where T ∈ [T i−1, T i], and λi is the linear coefficient of thermal expansion for insulator
type i. Pre-computed values for e(T ; Ii) are available in lookup tables for a wide range
of temperatures and for several material types [9, 34]. Total thermal contraction for an
insulator i is given by

∆xi

xi

=

∫ T i

T i−1
e(T ; Ii)k(T ; Ii)dT

∫ T i

T i−1
k(T ; Ii)dT

; (17)

thus, the nonlinear thermal expansion constraint is given by

n∑
i=1




∫ T i

T i−1
e(T ; Ii)k(T ; Ii)dT

∫ T i

T i−1
k(T ; Ii)dT




(xi

L

)
≤ δ

100
. (18)

The resulting optimization problem can now be expressed by the objective function in
(7) and (11), modified to eliminate the Ai variables, together with the linear constraints
defined in (2)–(6) and the nonlinear constraints defined by (14) and (18); namely,

min
(n,I,x,T )

P = F

n∑
i=1

Ci

(
TH

T i

− 1

) [
1

σ̄i+1xi+1

∫ T i+1

T i

k(T ; Ii+1)dT − 1

σ̄ixi

∫ T i

T i−1

k(T ; Ii)dT

]

subject to

n∑
i=1




∫ T i

T i−1
e(T ; Ii)k(T ; Ii)dT

∫ T i

T i−1
k(T ; Ii)dT




(xi

L

)
≤ δ

100
,

n∑
i=1

ρi(Ii)
xi

σ̄i

≤ mmax

F
,

n∑
i=1

xi ≤ L,

xi ≥ 0, i = 1, . . . , n

T i−1 ≤ T i ≤ T i+1, i = 1, . . . , n,

n ∈ {1, 2, . . . , nmax},
I ∈ In+1.



May 5, 2003 8

3 Pattern Search Algorithms for Mixed Variable Op-

timization

Generalized Pattern Search (GPS) is a class of derivative-free optimization algorithms that
was first defined and analyzed for unconstrained problems by Torczon [40], and extended
to problems with bound [27] and linear [28] constraints by Lewis and Torczon. Audet and
Dennis [7] extended the work of Lewis and Torczon to handle MVP problems with bound con-
straints. This algorithm was demonstrated numerically in [26] . Audet and Dennis provide
additional theoretical results under a hierarchy of more general smoothness conditions [8].
A straightforward extension of [7] for linearly constrained MVP problems under the relaxed
smoothness assumptions is described in [2].

For problems with nonlinear constraints, Lewis and Torczon [29] describe an augmented
Lagrangian GPS approach in which GPS is used to generate approximate solutions to a
sequence of bound constrained augmented Lagrangian subproblems (see [15]). As an al-
ternative, Audet and Dennis [6] introduce a filter GPS algorithm. The latter cannot quite
guarantee convergence to a first-order stationary point as the former can, but it applies di-
rectly, rather than sequentially, to more general problems, and it avoids the use of penalty
parameters and Lagrange multipliers.

The new FMGPS algorithm used here is an extension of the mixed variable GPS algo-
rithm of Audet and Dennis, in which a filter is added to handle the nonlinear constraints.
It represents a generalization of all the work cited here, and is described in detail in [4] and
[2].

3.1 Filters

Fletcher and Leyffer [19] developed the filter algorithm as a way to globalize sequential
quadratic programming (SQP) and sequential linear programming (SLP) methods without
the need for a merit or penalty function, which would require the user to specify the relative
weighting of optimality versus feasibility. Proofs of convergence to a first-order stationary
point are given in [20] for SQP and [21] for SLP methods.

In filter algorithms, the goal is to minimize two functions, the objective f and a continuous
aggregate constraint violation function h that satisfies h(x) ≥ 0 with h(x) = 0 if and only
if x is feasible. The function h is often set to h(x) = ‖C(x)+‖, where ‖ · ‖ is a vector norm
and C(x)+ is the vector of constraint violations at x; i.e., for i = 1, 2, . . . , m, Ci(x)+ = Ci(x)
if Ci(x) > 0; otherwise, Ci(x)+ = 0. In particular, if the squared 2-norm is used, then h
inherits whatever smoothness properties C possesses [6].

Simply defined, a filter, denoted F , is a set of trial points such that no point dominates
any other in the set with respect to its objective and constraint violation function values. In
other words, given any two points x and y in the filter, either f(x) < f(y) or h(x) < h(y),
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but not both.

In constructing a filter for GPS, we put two additional restrictions on F . First, we set a
bound on aggregate constraint violation, hmax, so that each point y ∈ F satisfies h(y) < hmax.
Second, we include only infeasible points in the filter and track feasible points separately.
This is done in order to avoid a problem with what Fletcher and Leyffer [19] refer to as
“blocking entries”, in which a feasible filter point with lower function value than a nearby
local minimum prevents convergence to both that minimum and a global minimum. Tracking
feasible points outside of the filter circumvents this uncommon but plausible scenario. With
these modifications, we now refer to a point y as filtered if it is dominated by any point in
the filter, satisfies h(y) ≥ hmax, or is feasible and has objective function value greater than
the incumbent best feasible point. A point that is not filtered is referred to as unfiltered.

3.2 The Filter MGPS Algorithm

A basic pattern search algorithm is characterized by two phases per iteration – a global
search and a local poll, in which trial points lying on a carefully constructed mesh are
evaluated. The goal of the search is to adequately sample the variable space, so as to
quickly identify a promising region containing a good local minimizer. In this step, any
finite strategy may be employed (including none) to identify trial points, as long as they
lie on the mesh. The gives the user great flexibility in choosing how to select points. For
example, any of the following strategies may be used in the search step to identify trial
points to evaluate.

• Randomly select mesh points using a Latin hypercube search [33, 38, 39] or orthogonal
arrays [36];

• Use a popular heuristic, such as a few iterations (i.e., generations) of a genetic algo-
rithm;

• Optimize a less expensive surrogate function and map the resulting numerical solution
to its closest mesh point (see [12, 13] as examples).

The latter option is popular in practice for optimization problems whose objective and
constraint functions are expensive to evaluate. An initial investment of function evaluations
is needed to form good surrogate objective and constraint functions, but then optimization
of the surrogate problem may be quickly achieved with little expense, and the resulting point
mapped to the mesh should yield an improved design. If an improved design is not found,
the surrogate functions are updated and then re-optimized during the next iteration. Several
studies have shown success using this approach [5, 11, 12, 13].

If the search step does not produce an improved mesh point (i.e., a point with a lower
objective function value than the current iterate), the poll step is executed, in which the
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mesh neighbors of the current iterate (called the poll set) are evaluated. This step is per-
formed so that convergence of a subsequence of iterates is guaranteed to produce a limit
point satisfying certain necessary conditions for optimality. The careful construction of the
mesh enables us to converge to such a point. The poll step can be terminated early if an
improved mesh point is found.

For filter GPS algorithms, the mesh and poll set are defined in terms of a poll center, as
opposed to the current iterate. That is, at each iteration k, the poll center pk ∈ {pF

k , pI
k} is

chosen as either the incumbent best feasible point pF
k or the incumbent least infeasible point

pI
k (I and F denote infeasible and feasible, respectively). Instead of seeking a trial point

with a better objective function value than the incumbent, the filter GPS algorithm searches
for an unfiltered point that can be added to the filter – ideally, an improved incumbent best
feasible or least infeasible point.

For mixed variable problems, each iterate xk = (xc
k, x

d
k), where xc

k is the vector of continu-
ous variables and xd

k is the vector of discrete or categorical variables. The mesh is constructed
as the direct product of the discrete variable space Xd with the union of a finite number of
lattices in the continuous variable space Xc, but translated from the poll center; i.e.,

Mk = Xd ×
imax⋃
i=1

{pc
k + ∆kD

iz ∈ Xc : z ∈ Z |Di|
+ }, (19)

where the mesh size parameter ∆k is a positive real number that controls the fineness of the
mesh, and Di denotes an n × nDi (where nDi > n) matrix whose columns positively span
the continuous variable space. Typically, these are chosen as [I,−I] or [I,−e], where I is
the identity matrix and e is the vector of ones.

The poll set is the union of the continuous mesh neighbors P (pk) of pk with the user-
defined set of discrete neighbor points N (pk) of pk. The continuous mesh neighbors can be
expressed as

Pk(pk) = {pc
k + ∆kd ∈ Xc : d ∈ Di

k}, (20)

where Di
k ⊆ Di is the set of poll directions at iteration k. For convenience, we use the

notation, hI
k = h(pI

k) > 0, f I
k = f(pI

k), and fF
k = f(pF

k ). The flexibility in selecting either of
the two poll centers does not affect the convergence theory [3, 6], but it can cause convergence
to a different limit point. Audet and Dennis [6] (see Example 7.1 there) show that choosing
one or the other exclusively in can result in unfavorable results in practice. They suggest
that one good strategy may be to alternate between the two poll centers each time a mesh
isolated filter point is found.

We should note that polling around other points in the filter is certainly allowed; however,
other points do not possess the same convergence properties as pF

k and pI
k in the limit.

Therefore, any such polling should be regarded as part of the search step, so that the
convergence theory is preserved.
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In the MGPS method of Audet and Dennis [7], if the poll step fails to yield an improved
mesh point, an extended poll step is invoked around any discrete neighbor whose objective
function value is sufficiently close to that of the current iterate (i.e., “almost” an improved
mesh point). This is done with the goal of generating an improved mesh point.

With the addition of nonlinear constraints to the problem, the filter approach seeks a
point that improves either the objective function f or the constraint violation function h.
Given the current poll center pk and user-specified extended poll triggers ξf

k ≥ ξ > 0 and
ξh
k ≥ ξ > 0 for f and h, respectively (for some positive constant ξ), we perform an extended

poll step around any feasible discrete neighbor whose objective function value is within ξf
k

of that of the best feasible point, or around any infeasible discrete neighbor whose constraint
violation function value is within ξh

k of that of the least infeasible point (without exceeding
hmax).

The bi-loss graph in Figure 2 depicts a filter with its possible poll centers for the next
iteration. The best feasible and least infeasible points are indicated, and the feasible solutions
lie on the vertical axis (labelled f). The dashed lines have been added to indicate the areas for
which an extended poll step is triggered. If a feasible discrete neighbor has an objective
function value higher on the axis than the current incumbent, but lower than the horizontal
dashed line, an extended poll step is performed around this discrete neighbor. Similarly,
an extended poll step is performed if a filtered discrete neighbor lies to the right of the
current least infeasible solution, but left of the vertical dashed line.

6
f

-
h

fF
k

(hI
k,fI

k )

hmax

Fk

r
r

hI
k+ξh

k

fF
k +ξf

k Feasible region: {x : h(x) = 0}
Trial set: Tk

Filtered points: Fk

Unfiltered points found: Tk \ Fk 6= ∅
Mesh isolated filter points: Tk ⊂ Fk

Figure 2: A Filter for GPS with Extended Poll Triggers.

Similar to the MGPS algorithm of [7], the extended poll step generates a finite
sequence of extended poll centers during a single iteration, beginning with the discrete
neighbor yk. However, the progress of this step is also different from that of [7], since we
seek an unfiltered point, as opposed to a simple decrease in the objective function.

At each step in the extended poll, there are three possible outcomes. First, if the
extended poll yields an unfiltered point, then the point is treated exactly the same as
any other unfiltered point; namely, the point is added to the filter, the filter is updated, and



May 5, 2003 12

the mesh is coarsened or left unchanged. Second, if the extended poll fails to find a point
with a better objective or constraint violation function value than the current extended poll
center, then the extended poll step around the current discrete neighbor is terminated,
and extended polling begins around the next qualified discrete neighbor. Once all such
points have been tested with the same result, the extended poll step is terminated, and
the mesh is refined.

However, the third possible outcome requires a new construction; that is, if extended
polling around a discrete neighbor fails to yield a unfiltered point, but improves the objec-
tive or constraint violation function value, relative to the discrete neighbor point, then the
extended poll step should be allowed to continue, since finding an unfiltered point is still
promising. This is done by establishing a temporary local filter. At iteration k, for each
discrete neighbor yk, a local filter FL

k (yk) is simply a filter relative to the current extended
poll step. It is populated initially with only the point yk and with hL

max = min(hI
k+ξh

k , hmax).
The extended poll step then generates a finite sequence of extended poll centers, where
each is chosen either as the best feasible or least infeasible point, relative to the local filter.
Extended polling with respect to yk proceeds, with points being added to the local filter as
appropriate, until no more unfiltered mesh points can be found with respect to the new local
filter, or until an unfiltered point is found with respect to the main filter. Once either of these
conditions is satisfied (which is guaranteed to occur for a fixed mesh size), the extended
poll step ends, and the main filter is appropriately updated with the points of the local
filter, which is then discarded. The mesh size parameter ∆k, which has been kept constant
throughout the step, is then updated, depending on the success of the search, poll, and
extended poll steps in finding an unfiltered point with respect to the main filter.

If a trial point (i.e., any point evaluated in the three phases) is dominated by any point
in the filter, it is said to be “filtered”. If all the trial points are filtered, then the current poll
centers are retained and the mesh is refined by setting ∆k+1 < ∆k, typically ∆k+1 = ∆k/2.
Otherwise, the trial point is added to the filter, the filter is updated to remove any points that
are now dominated by the new point, and the mesh is coarsened by setting ∆k+1 ≥ ∆k. Note
that this includes the choice to leave the mesh unchanged. More precise rules that govern
how ∆k must be refined or coarsened to maintain convergence properties of the algorithm
are given in [40], [8], and [7].

The extended poll step is summarized by the algorithm in Figure 3, and the FMGPS
Algorithm is summarized in Figure 4

4 Computational Model

This section further describes the optimization problem in terms of modelling decisions,
material data sources, and other problem setup issues.
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Extended Poll Step at Iteration k

Input: Current poll center pk, filter Fk, and extended poll triggers ξf
k and ξh

k .

For each discrete neighbor yk satisfying the extended poll criteria, do the follow-
ing:

• Initialize local filter FL
k with yk and hL

max = min{hI
k + ξh

k , hmax}. Set y0
k = yk.

• For j = 0, 1, 2, . . .

1. Evaluate f and h at points in Pk(y
j
k) until a point w is found that is

unfiltered with respect to FL
k , or until done.

2. If no point w ∈ Pk(y
j
k) is unfiltered with respect to FL

k , then go to Next.

3. If a point w is unfiltered with respect to Fk, set xk+1 = w and Quit.

4. If w is filtered with respect to Fk, but unfiltered with respect to FL
k , then

update FL
k to include w, and compute new extended poll center yj+1

k .

• Next: Discard FL
k and process next yk.

Figure 3: Extended Poll Step for the FMGPS Algorithm

4.1 Material Data

The types of insulators were chosen as the same as in [26]; namely, nylon, teflon, fiberglass
epoxy (both normal and plane), 6063-T5 aluminum, 1020 low-carbon steel, and 304 stainless
steel. For each of these materials, a substantial amount of engineering data was required.
Thermal conductivity and contraction data were obtained from lookup tables in [9] and [34],
while material densities were found in [37] and [34], and tensile yield strength data were
obtained from [17] and [32].

Thermodynamic cycle efficiency coefficients Ci, i = 1, 2, . . . , n (see (8)) are dependent on
temperature as follows:

Ci =





5, if T < 4.2K
4, if 4.2K ≤ T < 71K

2.5, if T ≥ 71K.
(21)

In order to make the model as accurate and efficient as possible, cubic splines were
used to fit all of the data found in lookup tables, including thermal conductivity, thermal
contraction, and tensile strength data. Numerical integrations were performed by applying
a composite Simpson’s Rule, with nodes matching those of the cubic spline. This eliminates
truncation error, since Simpson’s Rule is exact for cubic polynomials [25].
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Filter Mixed Variable Generalized Pattern Search – FMGPS

Initialization: Let x0 be an undominated point of a set of initial solutions. Include
all these points in the filter F0, with hmax > h(x0). Fix ξ > 0 and ∆0 > 0.

For k = 0, 1, 2, . . . , perform the following:

1. Update poll center pk ∈ {pF
k , pI

k}, extended poll triggers ξf
k ≥ ξ and ξh

k ≥ ξ.

2. Compute incumbent values fF
k = f(pF

k ), hI
k = h(pI

k), f
I
k = f(pI

k).

3. Search step: Employ some finite strategy seeking an unfiltered mesh point
xk+1.

4. Poll step: If the search step did not find an unfiltered point, evaluate f
and h at points in the poll set Pk(pk) ∪ N (pk) until an unfiltered mesh point
xk+1 is found, or until done.

5. Extended Poll step: If search and poll did not find an unfiltered point,
execute the algorithm in Figure 3 to continue looking for an unfiltered point
xk+1.

6. Update: If search, poll, or extended poll finds an unfiltered point,
Update filter Fk+1 with xk+1, and set ∆k+1 ≥ ∆k;
Otherwise, set Fk+1 = Fk, and set ∆k+1 < ∆k.

Figure 4: FMGPS Algorithm

4.2 Choosing Discrete Neighbors

The neighborhood structure that the user chooses to incorporate essentially determines the
definition of a minimizer. That is, when the solution of an MVP problem is found, it is with
respect to the user-specified discrete set of neighbors. If a neighborhood structure is chosen
so that all other sets of discrete variable values are neighbors, a more global solution can
be obtained, but often at extraordinary computational cost. On the other hand, severely
restricting the size of the set of neighbors will save significant computational cost, but a local
optimizer with a higher objective function value is likely to be obtained.

In order to make proper comparisons, the set of neighbors we use for this problem is
exactly the same as was used by Kokkolaras et al. [26]. It includes designs in which the
following occur:

• The type of insulator between any two heat intercepts is changed to any other type,
while insulator thicknesses and intercept temperatures remain constant.
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• An intercept and the insulator above it are removed, while thicknesses of the remaining
insulators are increased proportionally (rounded to the nearest integer multiple of the
current mesh size) to fill the remaining space.

• A new intercept and an insulator underneath it are added with the following properties:

– The type of insulator is the same as the one below it,

– The cooling temperature is set to the average of the two intercepts adjacent to it,
rounded to the nearest integer multiple of the current mesh size,

– The thickness of both the new insulator and the insulator below it are both set to
half of that of latter, rounded to the nearest integer multiple of the current mesh
size.

Note that rounding to the nearest integer multiple of the current mesh size is necessary
to ensure that the trial point lies on the mesh.

5 Computational Results

The FMGPS algorithm described in Section 3.2 has been implemented in a Matlabr code,
called NOMADm [1], and applied to this problem. We now present results of several NO-
MADm runs and show that the approach significantly improves the design of Hilal and
Eyssa [23], and is comparable to the results of Kokkolaras et al. [26], even though the prob-
lem takes on the additional nonlinear load-bearing constraints.

Table 1 shows the data parameters chosen for the results that follow. The first four have
values identical to the choices of Kokkolaras et al. [26], while the remaining parameters are
unique to this problem.

Table 1: Thermal Insulation Problem: Model Parameters

Parameter Symbol Value

Hot surface temperature TH 300 K

Cold surface temperature TC 4.2 K

System total length L 100 cm

Maximum number of intercepts nmax 10

Load placed on the system F 250 kN

Maximum total system mass mmax 10 kg

Maximum system thermal contraction δ 5%
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To match the setup of [26] as much as possible, runs were performed with an initial mesh
size of ∆0 = 10 and terminated when the condition ∆k ≤ .15625 was achieved. The mesh
refinement strategy used by [26] could not be duplicated by NOMADm; thus, in our runs,
we refine the mesh by simply dividing the mesh size parameter ∆k in half. Coarsening of
the mesh was not performed.

Extended poll triggers for the objective and constraint violation function were set at one
and five percent, respectively, the former being consistent with [26]. When the filter logic
of the FMGPS is applied for the nonlinear constraints, polling is performed around the best
feasible point.

Also consistent with [26], no search is used, and the initial design consisted of one
intercept placed exactly in the middle of the system and set at 150 K, with a nylon insulator
on the cold side and a teflon insulator on the hot side.

5.1 Validation

The software and function files were validated by mimicking the designs of [22] and [23],
running these problems, and comparing the designs. In both of these previous papers, the
authors applied their optimizer to cases of 1-3 heat intercepts with insulators made of either
304 stainless steel or plane-cloth fiberglass epoxy. For stainless steel, our results matched
theirs almost exactly. For fiberglass epoxy, there were some slight differences when more
than one intercept is used, but these were noted in [26] as well. These differences were most
likely caused by different methods in computing the objective function integrals. As in [26],
we used cubic splines to fit thermal conductivity data that was available only in tabular
form for specific temperatures. However, rather than apply a Matlab

r
integration routine,

we applied our own implementation of Simpson’s rule, which is exact for cubic polynomials.
The inaccuracy is more visible in the epoxy results because thermal conductivity data was
only available at four temperatures, as opposed to the 18 different temperatures available
for stainless steel.

When we recomputed the results of [26] to validate our mixed variable logic, we converged
to a different design with a similar low objective function value. Table 2 shows the differences
between the two runs, where the materials cited there are abbreviated by the following: N =
nylon, E = epoxy (normal), Ep = epoxy (plane), and T = teflon. Note that, although power
is optimized in our software, we report normalized power at termination, in which power is
multiplied by the system length L and divided by the smallest cross-sectional area of any
insulator. Previous authors have expressed results this way so that designs can be compared,
independent of these two parameters. We keep this convention for the same purpose.

While the numerical integration issue just described can lead to small deviations, we
suspect that the difference in mesh refinement strategies led to a different local optimizer
along a different path. In [26], with a starting mesh size of ∆0 = 10, the mesh refinement
strategy was to divide the current mesh size by 2`, where ` = 1, 2, . . . is incremented each
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time the mesh is refined. Since NOMADm is currently incapable of incrementing `, our mesh
refinement consists of simply dividing the current mesh size by two (i.e., ` = 1).

Table 2: Thermal Insulation Problem: MVP Validation

Problem: Original FMGPS ReRun

Power
(

PL
A

)
: 25.294 W/cm 25.589 W/cm

Insulators Used: NNNNNNNEEET NNNNNNTEETT

i xi (cm) T i (K) xi (cm) T i (K)

1 0.3125 4.2188 4.5313 6.125

2 5.4688 7.3438 6.7188 10.55

3 3.9062 10 4.8437 14.35

4 6.5625 15 4.2188 17.994

5 5.7812 20 7.3438 24.969

6 5.1562 25 9.8438 36.006

7 13.2812 40 24.948 71.094

8 21.4062 71.0938 12.135 116.88

9 8.5938 101.25 7.5 156.88

10 9.2188 146.25 6.4063 198.44

11 20.3125 11.5105

5.2 Adding the Nonlinear Constraints

The nonlinear constraints were added to the runs in three steps. First, we simply tested the
two designs from Table 2 versus the new nonlinear constraints and found that the thermal
contraction constraint for both designs was violated by approximately 8% (i.e., the observed
thermal contraction of 5.4% exceeded the 5% threshold by 8%). This suggests that a new
design having a different material configuration should be expected as the new constraints
are incorporated. Second, the implicit constraint on stress (given by (13) with equality), was
added to allow variable cross-sectional areas, and thus match the formulation of Hilal and
Eyssa [23]. We refer to this as the partial model. Finally, the mass and thermal contraction
constraints were added to complete the full model. By doing so, the resulting change in
required power represents the cost of satisfying the additional load-bearing constraints.

Table 3 shows the results for the partial and full models (columns 3 and 4), along with
the design found by Hilal and Eyssa [23] (column 2). For each run, the minimal required
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power is normalized by multiplying by the total system length and dividing by the smallest
cross-sectional area of an insulator. Following the power and the material configuration for
each design, insulator thicknesses and heat intercept temperature settings are listed.

Table 3: Thermal Insulation Problem: Results

Problem: Hilal & Eyssa Partial Model Full Model

Power
(

PL
A

)
: 53.2 W/cm 24.551 W/cm 23.768 W/cm

Insulators Used: EpEpEp EEEEEEEEEEEE EEEEEEEEEEEE

i xi (cm) T i (K) xi (cm) T i (K) xi (cm) T i (K)

1 22.0 8.38 7.1875 6.5875 0.625 4.25

2 23.8 36.3 11.406 12.938 8.125 7.7375

3 24.8 116.6 15.625 25.85 7.9688 12.369

4 29.4 29.531 71.094 7.8125 18.094

5 6.875 100.31 12.344 29.912

6 5 127.66 26.094 71.094

7 2.5 143.13 8.125 105.94

8 2.5 159.06 5.3125 135.47

9 4.6875 188.59 5 165.94

10 5 222.5 5.625 202.03

11 9.688 12.9682

We can see immediately that the addition of the implicit stress constraint results in
a variable cross-sectional area design that requires over 50% less (normalized) power than
the design found by Hilal and Eyssa [23]. This savings was expected because the newer
formulation allows for varying the number of heat intercepts and the mixing of insulator
types. A similar (65%) savings is achieved by Kokkolaras et al. [26] in optimizing the
constant cross-sectional area formulation of Hilal and Boom [22], but with the additional
categorical design variables.

A bit surprising is the slight decrease in power when the final two constraints are added
(see columns 3 and 4), particularly because this is the point at which a linearly constrained
problem becomes a nonlinearly constrained one, and the new algorithm’s filter logic is ap-
plied. Recall that the theory ensures convergence to a first-order stationary point for the
partial model (since all its constraints are linear), but does not do so for the full model. In
spite of this, the new algorithm still finds a better feasible design. It is indeed possible that
the FMGPS algorithm generates a different sequence and simply terminates near a better
local minimizer.
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Furthermore, when we restart the process with this solution as the initial point, no
movement away from the solution occurs. We also tried starting at a few other “common
sense” initial designs, including both (now infeasible) solutions from Table 2, and from
a design with 10 evenly spaced intercepts with all normal epoxy insulators; however, all of
these produced designs that required more power than the full model design given in Table 3.
Thus we believe our solution to be fairly robust.

Figure 5 illustrates the performance of the FMGPS algorithm on the full model, where
the power required for the incumbent best design is plotted versus the number of function
evaluations. The lower plot is a magnification of the upper one. The “L”-shaped plot is very
typical behavior of derivative-free methods, since good stopping rules for these methods
are difficult. The “stair steps” seen in the right-hand plot indicate varying length polling
sequences.

We should note that the power values shown on the vertical axes of these plots do not
match the data in the Table 3 because they represent two different things. The objective
function is to minimize power, as measured in Figure 5, but the required power shown in
Table 3 is normalized (hence the (PL

A
) notation), so as to allow comparisons with the results

of Hilal and Eyssa [23].

Figure 6 depicts the progression of the filter during the run of the full model, where the
plots in the right column are magnifications of those on the left. Each of the three rows
represents a “snapshot” taken after 150, 200, and 500 respective function evaluations were
performed. Although the algorithm terminated after more than 9000 function evaluations,
changes in the filter after 500 function evaluations could not be detected within the resolution
of the plot. This is consistent with the long and shallow progression of the best objective
function value seen in Figure 5. Clearly, better stopping rules would be useful.

In the filter plots, the asterisks represent a subset of the best feasible points found up
to that point, while the “stair step” lines represent the boundary between the filtered and
unfiltered points. In this run, the nonlinear constraints were scaled by dividing each by its
right-hand side and then subtracting one from both sides. Thus in the left column plots, the
choice of hmax = 1 represents a 100% constraint violation.

Table 3 also shows that the new constraints yield significantly different insulator configu-
rations than that of Kokkolaras et al.[26] – that of all normal cloth fiberglass epoxy. This is
consistent with the raw data we used, which shows epoxy to have low thermal conductivity
and higher resistance to stress than nylon or teflon.

However, some of the other materials (including nylon and teflon) have better thermal
contraction properties than epoxy, which also has a low thermal stress threshold and which
would be tested by any thermal contraction. Modelling thermal stress as an additional
constraint that depends on thermal contraction would be an interesting extension to this
problem and might result in a completely different material configuration.

The results shown here demonstrate that, although the FMGPS algorithm can be ex-
pensive when applied to mixed variable problems, it successfully generated much-improved
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Figure 5: Iteration History for the Thermal Insulation System Design Problem

designs for this problem. The design of [23] has been significantly improved, and the addition
of constraints on stress, mass, and thermal contraction yields a more realistic feasible design
with essentially no additional power required over that of [26].
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Figure 6: Filter Progression for the Full Model
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